Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Evol Appl ; 17(3): e13676, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38505216

RESUMO

The decline of lions (Panthera leo) in Kenya has raised conservation concerns about their overall population health and long-term survival. This study aimed to assess the genetic structure, differentiation and diversity of lion populations in the country, while considering the influence of past management practices. Using a lion-specific Single Nucleotide Polymorphism (SNP) panel, we genotyped 171 individuals from 12 populations representative of areas with permanent lion presence. Our results revealed a distinct genetic pattern with pronounced population structure, confirmed a north-south split and found no indication of inbreeding in any of the tested populations. Differentiation seems to be primarily driven by geographical barriers, human presence and climatic factors, but management practices may have also affected the observed patterns. Notably, the Tsavo population displayed evidence of admixture, perhaps attributable to its geographic location as a suture zone, vast size or past translocations, while the fenced populations of Lake Nakuru National Park and Solio Ranch exhibited reduced genetic diversity due to restricted natural dispersal. The Amboseli population had a high number of monomorphic loci likely reflecting a historical population decline. This illustrates that patterns of genetic diversity should be seen in the context of population histories and that future management decisions should take these insights into account. To address the conservation implications of our findings, we recommend prioritizing the maintenance of suitable habitats to facilitate population connectivity. Initiation of genetic restoration efforts and separately managing populations with unique evolutionary histories is crucial for preserving genetic diversity and promoting long-term population viability.

2.
Curr Biol ; 34(7): 1576-1586.e5, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38479386

RESUMO

Strong genetic structure has prompted discussion regarding giraffe taxonomy,1,2,3 including a suggestion to split the giraffe into four species: Northern (Giraffa c. camelopardalis), Reticulated (G. c. reticulata), Masai (G. c. tippelskirchi), and Southern giraffes (G. c. giraffa).4,5,6 However, their evolutionary history is not yet fully resolved, as previous studies used a simple bifurcating model and did not explore the presence or extent of gene flow between lineages. We therefore inferred a model that incorporates various evolutionary processes to assess the drivers of contemporary giraffe diversity. We analyzed whole-genome sequencing data from 90 wild giraffes from 29 localities across their current distribution. The most basal divergence was dated to 280 kya. Genetic differentiation, FST, among major lineages ranged between 0.28 and 0.62, and we found significant levels of ancient gene flow between them. In particular, several analyses suggested that the Reticulated lineage evolved through admixture, with almost equal contribution from the Northern lineage and an ancestral lineage related to Masai and Southern giraffes. These new results highlight a scenario of strong differentiation despite gene flow, providing further context for the interpretation of giraffe diversity and the process of speciation in general. They also illustrate that conservation measures need to target various lineages and sublineages and that separate management strategies are needed to conserve giraffe diversity effectively. Given local extinctions and recent dramatic declines in many giraffe populations, this improved understanding of giraffe evolutionary history is relevant for conservation interventions, including reintroductions and reinforcements of existing populations.


Assuntos
Girafas , Animais , Girafas/genética , Ruminantes/genética , Evolução Biológica , Filogenia , Deriva Genética
3.
Ecol Evol ; 14(2): e10982, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38362173

RESUMO

Social carnivores frequently live in fission-fusion societies, where individuals that share a common territory or home range may be found alone, in subgroups, or altogether. Absolute group size and subgroup size is expected to vary according to resource distribution, but for species that are susceptible to anthropogenic pressures, other factors may be important drivers. African lions (Panthera leo) are the only truly social felid and lion prides are characterized by fission-fusion dynamics with social groups frequently splitting and reforming, and subgroup membership can change continuously and frequently. The number of individuals in a group can be reflective of social, ecological, and anthropogenic conditions. This dynamic behavior makes understanding lion grouping patterns crucial for tailoring conservation measures. The evolution of group living in lions has been the topic of numerous studies, and we drew on these to formulate hypotheses relating to group size and subgroup size variation. Based on data collected from 199 lion groups across eight sites in Kenya, we found that group sizes were smaller when lions were closer to human settlements, suggesting that edge effects are impacting lions at a national scale. Smaller groups were also more likely when they were far from water, and were associated with very low and very high levels of non-tree vegetation. We found significant differences between the study sites, with the Maasai Mara having the largest groups (mean ± SD = 7.7 ± 4.7, range = 1-19), and Amboseli conservation area the smallest (4.3 ± 3.5, range = 1-14). While long-term studies within a single site are well suited to thoroughly differentiate between absolute group size and subgroup size, our study provides unique insight into the correlates of grouping patterns in a vulnerable species at a national scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA